Strong rules for nonconvex penalties and their implications for efficient algorithms in high-dimensional regression
نویسندگان
چکیده
We consider approaches for improving the efficiency of algorithms for fitting nonconvex penalized regression models such as SCAD and MCP in high dimensions. In particular, we develop rules for discarding variables during cyclic coordinate descent. This dimension reduction leads to a substantial improvement in the speed of these algorithms for high-dimensional problems. The rules we propose here eliminate a substantial fraction of the variables from the coordinate descent algorithm. Violations are quite rare, especially in the locally convex region of the solution path, and furthermore, may be easily detected and corrected by checking the Karush-Kuhn-Tucker conditions. We extend these rules to generalized linear models, as well as to other nonconvex penalties such as the `2-stabilized Mnet penalty, group MCP, and group SCAD. We explore three variants of the coordinate decent algorithm that incorporate these rules and study the efficiency of these algorithms in fitting models to both simulated data and on real data from a genome-wide association study.
منابع مشابه
Rules and Regulations on Competition Rights in Electricity Markets: A Comparative Study
It is essential to enact restrictive laws and impose penalties for private sector participants when they play an important role in different sectors of production and trading of commodities. These laws and penalties reduce antitrust activities and protect participants against illegal activities. Therefore, the study and recognition of legal and economic issues related to the competition in diff...
متن کاملEfficient Algorithms for Just-In-Time Scheduling on a Batch Processing Machine
Just-in-time scheduling problem on a single batch processing machine is investigated in this research. Batch processing machines can process more than one job simultaneously and are widely used in semi-conductor industries. Due to the requirements of just-in-time strategy, minimization of total earliness and tardiness penalties is considered as the criterion. It is an acceptable criterion for b...
متن کاملAn Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کامل